Telegram Group & Telegram Channel
Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/79
Create:
Last Update:

Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/79

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA